
Since GNSS outages are inevitable, other onboard sensors like 

camera and LiDAR are handy. While fusion-based methods are 

common, both modalities have limitations in large-scale place 

recognition in terms of robustness and scalability. Cross-modal 

frameworks come as a flexible solution to mitigate the problem.
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Figure 1: Our 3-stage pipeline is designed to capture both fine-grained local details (2) and broader global context (3) for successful mapping images 

and LiDAR point clouds into the shared space. 

Cross-modal local feature training: We 

establish the correspondences between the 2D 

image feature map and 3D voxel feature map 

using the Voxel-Pixel projection module. Rich 

local features from the foundation model are 

distilled to enrich the learned shared space, 

while the projected voxel features bring 

geometric consistency. 

Figure 2: Local feature correspondences in local feature 

space after the local feature training
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Figure 3: While uni-modal methods suffer from inherent data limitations (low lighting, repetitive 

geometrical structures), our cross-modal method can utilize the stronger modality. 

Dataset Oxford RobotCar [4] ViViD++ [5] KITTI [6]

AR@1% 2D-3D 3D-2D 2D-3D 3D-2D 2D-3D 3D-2D

Cattaneo [1] 77.3 70.4 99.6 98.6 23.4 28.7

LC2 [2] 81.2 73.8 96.0 94.6 - - - -

LIP-Loc [3] 77.8 73.6 98.4 93.0 40.9 29.3

VXP (Ours) 84.4 76.9 99.6 99.8 38.6 38.3

Table 1: Cross-modal evaluation. Our model achieves SOTA performance across 3 large-scale datasets.
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(a) Global-only (b) Local + Global

AR@1% 2D-3D 3D-2D

Global-

only

81.5 74.7

Local + 

Global

84.4 76.9

Image PCA features

Voxel local features

                                  [1] Cattaneo et al., Global visual localization in lidar-maps through shared 2d-3d embedding space, ICRA 2020; [2] Lee et al., Lc2: Lidar-camera loop constraints for cross-modal place recognition, RA-L 2023; [3] Shubodh et al., Lip-loc: Lidar image pre-training for cross-modal localization, WACV-W 2024;  

                                   [4] Maddern et al., 1 year, 1000 km: The oxford robotcar dataset, IJRR 2017; [5] Lee et al., Vivid++: Vision for visibility dataset, RA-L 2022; [6] Geiger et al., Are we ready for autonomous driving? the kitti vision benchmark suite, CVPR 2012

A novel framework for cross-modal place recognition, which 

bridges the domain gap between images and point clouds by 

enforcing local feature similarity in a fully self-supervised manner.
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Cross-Modal Place Recognition (PR):Cross-Modal Place Recognition (PR):

Given a query image or a LiDAR scan, retrieve the closet match of 

the other modality and its corresponding location from the database.

Query Image

…

How to effectively design a shared Image-LiDAR latent 

space to seamlessly switch between two modalities 

that are completely different?
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Voxel-Pixel projection: given calibration K and voxel 

grid size (vx, vy, xz) we obtain voxel’s v pixel location p

Local feature loss: For every projected voxel location p 

we enforce cross-modal consistency between voxel-

based ℳ𝑣 and image-based ℳ𝐼 feature maps.  
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