4 Motivation I

Since GNSS outages are inevitable, other onboard sensors like
camera and LIDAR are handy. While fusion-based methods are
common, both modalities have limitations in large-scale place
recognition in terms of robustness and scalability. Cross-modal

.

frameworks come as a flexible solution to mitigate the problem. /
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Cross-Modal Place Recognition (PR):

Given a query image or a LiDAR scan, retrieve the closet match of
the other modality and its corresponding location from the database.

N - How to effectively design a shared Image-LIDAR latent
space to seamlessly switch between two modalities

that are completely different?
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4 Contribution

A novel framework for cross-modal place recognition, which
bridges the domain gap between images and point clouds by
enforcing local feature similarity in a fully self-supervised manner.
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Our VXP

Figure 1: Our 3-stage pipeline is designed to capture both fine-grained local details (2) and broader global context (3) for successful mapping images

and LiDAR point clouds into the shared space.
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Results
Dataset Oxford RobotCar [4] ViViD++ [5] KITTI [6]
AR@1% 2D-3D 3D-2D 2D-3D 3D-2D 2D-3D 3D-2D
Cattaneo [1] 77.3 70.4 99.6 08.6 23.4 28.7
LC? [2] 81.2 73.8 96.0 94.6 - - - -
LIP-Loc [3] /7.8 73.6 98.4 93.0 40.9 29.3
VXP (Ours) 84.4 76.9 99.6 99.8 38.6 38.3
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Voxel-Pixel projection: given calibration K and voxel
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Cross-modal local feature training: We Figure 2: Local feature correspondences in local feature

/

establish the correspondences between the 2D
image feature map and 3D voxel feature map

space after the local feature training

using the Voxel-Pixel projection module. Rich Lppony = z d; * M, (p) — M)
local features from the foundation model are P,
distilled to enrich the learned shared space, . .
. . f . Local feature loss: For every projected voxel location p
while the projected voxel features bring we enforce cross-modal consistency between voxel-

geometric consistency.

based M, and image-based M, feature maps.

Table 1: Cross-modal evaluation. Our model achieves SOTA performance across 3 large-scale datasets.
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(b) ViViD++ campus night-day2 3D-2D succeeded.
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() ViViD4+ city day l-evening 2D-2D failed.

(d) ViViD++ city dayl-evening 2D-3D succeeded.

Figure 3: While uni-modal methods suffer from inherent data limitations (low lighting, repetitive
geometrical structures), our cross-modal method can utilize the stronger modality.
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